Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of the Ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3 multilayers

Identifieur interne : 000E58 ( Main/Repository ); précédent : 000E57; suivant : 000E59

Effect of the Ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3 multilayers

Auteurs : RBID : Pascal:13-0303791

Descripteurs français

English descriptors

Abstract

The properties of molybdenum trioxide (20 nm)/silver (x nm)/molybdenum trioxide (35 nm) multilayer structures, deposited by simple vacuum evaporation, depend significantly on the deposition rate and on the thickness of the silver layer. If the presence of a commutation from an insulating state to a highly conductive state in these structures is usual, we show that, the thickness of the layer of Ag corresponding to the percolation of the metal paths, decreases from 8 nm to 4 nm when the Ag deposition rate increases from 0.2 nm/s to 0.4 nm/s. The transmission being optimum at 10-11 nm, the calculation of the factor of merit shows that the best structures are obtained for silver films approx. 10 nm thick deposited at a rate between 0.3 nm/s and 0.4 nm/s. When the optimal structures MoO3/Ag/MoO3 are used as anode in planar organic solar cells anode/CuI/CuPc/C60/Alq3/Al they allow achieving power conversion efficiency of the same order of magnitude than that achieved by reference cells using ITO as anode.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0303791

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of the Ag deposition rate on the properties of conductive transparent MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
multilayers</title>
<author>
<name sortKey="Cattin, L" uniqKey="Cattin L">L. Cattin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN), UMR CNRS-Université de Nantes 6502, 2 rue de la Houssinière, BP 92208</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lare, Y" uniqKey="Lare Y">Y. Lare</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Université de Lomé, Faculté des Sciences, Laboratoire Energie Solaire</s1>
<s2>BP 1515 Lomé</s2>
<s3>TGO</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Togo</country>
<wicri:noRegion>BP 1515 Lomé</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Makha, M" uniqKey="Makha M">M. Makha</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Laboratoire Optoélectronique et Physico-chimie des Matériaux, Université Ibn Tofail, Faculté des Sciences, BP 133</s1>
<s2>Kenitra 14000</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Kenitra 14000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fleury, M" uniqKey="Fleury M">M. Fleury</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN), UMR CNRS-Université de Nantes 6502, 2 rue de la Houssinière, BP 92208</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chandezon, F" uniqKey="Chandezon F">F. Chandezon</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>UMR SPrAM 5819 (CEA-CNRS-UJF), CEA Grenoble/INAC, 17 Rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abachi, T" uniqKey="Abachi T">T. Abachi</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Morsli, M" uniqKey="Morsli M">M. Morsli</name>
<affiliation wicri:level="4">
<inist:fA14 i1="05">
<s1>L'UNAM, Université de Nantes, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes, 44000</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
<author>
<name sortKey="Napo, K" uniqKey="Napo K">K. Napo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Université de Lomé, Faculté des Sciences, Laboratoire Energie Solaire</s1>
<s2>BP 1515 Lomé</s2>
<s3>TGO</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Togo</country>
<wicri:noRegion>BP 1515 Lomé</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Addou, M" uniqKey="Addou M">M. Addou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Laboratoire Optoélectronique et Physico-chimie des Matériaux, Université Ibn Tofail, Faculté des Sciences, BP 133</s1>
<s2>Kenitra 14000</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Kenitra 14000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bernede, J C" uniqKey="Bernede J">J. C. Bernède</name>
<affiliation wicri:level="4">
<inist:fA14 i1="03">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
</placeName>
<orgName type="university">Université de Nantes</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0303791</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0303791 INIST</idno>
<idno type="RBID">Pascal:13-0303791</idno>
<idno type="wicri:Area/Main/Corpus">000757</idno>
<idno type="wicri:Area/Main/Repository">000E58</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium complex</term>
<term>Anode</term>
<term>Conversion rate</term>
<term>Copper complex</term>
<term>Deposition rate</term>
<term>Energy conversion</term>
<term>Flexible electrode</term>
<term>Fullerenes</term>
<term>Indium oxide</term>
<term>Metallophthalocyanine</term>
<term>Molybdenum</term>
<term>Molybdenum oxide</term>
<term>Multiple layer</term>
<term>Organic solar cells</term>
<term>Oxide layer</term>
<term>Percolation</term>
<term>Planar technology</term>
<term>Silver</term>
<term>Thickness</term>
<term>Tin addition</term>
<term>Vacuum deposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vitesse dépôt</term>
<term>Multicouche</term>
<term>Dépôt sous vide</term>
<term>Epaisseur</term>
<term>Percolation</term>
<term>Anode</term>
<term>Technologie planaire</term>
<term>Cellule solaire organique</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Addition étain</term>
<term>Couche oxyde</term>
<term>Electrode souple</term>
<term>Oxyde de molybdène</term>
<term>Molybdène</term>
<term>Argent</term>
<term>Phtalocyanine métallique</term>
<term>Complexe de cuivre</term>
<term>Fullerènes</term>
<term>Quinoléin-8-ol</term>
<term>Complexe d'aluminium</term>
<term>Oxyde d'indium</term>
<term>MoO3</term>
<term>C60</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Molybdène</term>
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The properties of molybdenum trioxide (20 nm)/silver (x nm)/molybdenum trioxide (35 nm) multilayer structures, deposited by simple vacuum evaporation, depend significantly on the deposition rate and on the thickness of the silver layer. If the presence of a commutation from an insulating state to a highly conductive state in these structures is usual, we show that, the thickness of the layer of Ag corresponding to the percolation of the metal paths, decreases from 8 nm to 4 nm when the Ag deposition rate increases from 0.2 nm/s to 0.4 nm/s. The transmission being optimum at 10-11 nm, the calculation of the factor of merit shows that the best structures are obtained for silver films approx. 10 nm thick deposited at a rate between 0.3 nm/s and 0.4 nm/s. When the optimal structures MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
are used as anode in planar organic solar cells anode/CuI/CuPc/C
<sub>60</sub>
/Alq
<sub>3</sub>
/Al they allow achieving power conversion efficiency of the same order of magnitude than that achieved by reference cells using ITO as anode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of the Ag deposition rate on the properties of conductive transparent MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
multilayers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CATTIN (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LARE (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAKHA (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FLEURY (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHANDEZON (F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ABACHI (T.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MORSLI (M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>NAPO (K.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ADDOU (M.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>BERNÈDE (J. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut des Matériaux Jean Rouxel (IMN), UMR CNRS-Université de Nantes 6502, 2 rue de la Houssinière, BP 92208</s1>
<s2>44322 Nantes</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université de Lomé, Faculté des Sciences, Laboratoire Energie Solaire</s1>
<s2>BP 1515 Lomé</s2>
<s3>TGO</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>L'UNAM, Université de Nantes, MOLTECH-Anjou, CNRS, UMR 6200, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes 44322</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>UMR SPrAM 5819 (CEA-CNRS-UJF), CEA Grenoble/INAC, 17 Rue des Martyrs</s1>
<s2>38054 Grenoble</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>L'UNAM, Université de Nantes, Faculté des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208</s1>
<s2>Nantes, 44000</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Laboratoire Optoélectronique et Physico-chimie des Matériaux, Université Ibn Tofail, Faculté des Sciences, BP 133</s1>
<s2>Kenitra 14000</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>103-109</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>43 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0303791</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The properties of molybdenum trioxide (20 nm)/silver (x nm)/molybdenum trioxide (35 nm) multilayer structures, deposited by simple vacuum evaporation, depend significantly on the deposition rate and on the thickness of the silver layer. If the presence of a commutation from an insulating state to a highly conductive state in these structures is usual, we show that, the thickness of the layer of Ag corresponding to the percolation of the metal paths, decreases from 8 nm to 4 nm when the Ag deposition rate increases from 0.2 nm/s to 0.4 nm/s. The transmission being optimum at 10-11 nm, the calculation of the factor of merit shows that the best structures are obtained for silver films approx. 10 nm thick deposited at a rate between 0.3 nm/s and 0.4 nm/s. When the optimal structures MoO
<sub>3</sub>
/Ag/MoO
<sub>3</sub>
are used as anode in planar organic solar cells anode/CuI/CuPc/C
<sub>60</sub>
/Alq
<sub>3</sub>
/Al they allow achieving power conversion efficiency of the same order of magnitude than that achieved by reference cells using ITO as anode.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Vitesse dépôt</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Deposition rate</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Velocidad deposición</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Vacuum deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Depósito bajo vacío</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Percolation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Percolation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Percolación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Anode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Anode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Technologie planaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Planar technology</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Tecnología planar</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Electrode souple</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Flexible electrode</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Electrodo flexible</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde de molybdène</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Molybdenum oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Molibdeno óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Plata</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Phtalocyanine métallique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Metallophthalocyanine</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Ftalocianina metálica</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Complexe de cuivre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Copper complex</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cobre complejo</s0>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Quinoléin-8-ol</s0>
<s2>NK</s2>
<s2>FR</s2>
<s2>FF</s2>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Complexe d'aluminium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Aluminium complex</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Aluminio complejo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>MoO3</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>C60</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E58 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E58 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0303791
   |texte=   Effect of the Ag deposition rate on the properties of conductive transparent MoO3/Ag/MoO3 multilayers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024